

Figure 2.—Plot of solubility (M) of Tl₄Fe(CN)₆ against concentration of added salt: \bullet , $(CH_3)_4NO_8$; \ominus , KNO_8 ; O, LiNO₈.

Figure 3.—Plot of solubility (M) of K₂BaFe(CN)₆ against concentration of added salt: \bullet , NaCl; O, LiCl; \bullet , (CH₃)₄NCl; \blacktriangle , (C₂H₅)₄NCl; \triangle , KCl.

"common ion effect," since the saturating salt, K_2Ba -Fe $(CN)_6$, itself gives rise to K⁺ ions in solution.

Figure 4 shows that the increase in solubility of Co-(NH₃)₆Fe(CN)₆ in the presence of (CH₃)₄NCl and (C₂H₅)₄NCl is much higher than in the presence of KCl, NaCl, and LiCl. In fact, two families of curves are obtained, one for the alkali metal chlorides and the other for the quaternary salts. The rather abnormally large effect of the tetraalkylammonium salts on the solubility may reasonably be attributed to an abnormally large decrease in the activity coefficient of the Fe-(CN)₆³⁻ ion in the presence of the quaternary ions.

Conclusion

From the results, it seems reasonable to conclude that at the same ionic strength, the tetramethylammonium ion decreases the activity coefficient of the triply charged $Fe(CN)_{6^{3-}}$ ion (f_{III}) by a larger extent than that of the quadruply charged $Fe(CN)_{6^{4-}}$ ion (f_{IV}) , and that f_{III} decreases more rapidly with increasing ionic

Figure 4.—Plot of solubility (M) of $Co(NH_3)_6Fe(CN)_6$ against concentration of added salt: \blacktriangle , $(C_2H_5)_4NC1$; $\triangle(CH_3)_4NC1$; \bullet , KC1; \bigcirc , NaC1; \ominus , LiC1.

strength than f_{IV} , although the opposite might be expected from a simple consideration of interionic forces.

Rather high salt concentrations have been used in the present work, and under these conditions specific interaction between ions, arising out of short-range forces, is likely to preponderate over normal electrostatic factors. It appears that specific interaction between a tetra-alkylammonium ion and the $Fe(CN)_{6}^{3-}$ ion is stronger than that between this cation and $Fe(CN)_{6}^{4-}$ ion and also stronger than that between an alkali metal ion and the $Fe(CN)_{6}^{3-}$ ion. However, no quantitative treatment can be attempted at this stage.

Acknowledgment.—The authors thank the Council of Scientific and Industrial Research, New Delhi, India, for financial assistance.

Contribution from the Department of Materials Science and Metallurgical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, and the Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433

Synthesis and Some Properties of Yttrium and Lanthanide Isopropoxides¹

BY L. M. BROWN AND K. S. MAZDIYASNI*

Received February 25, 1970

Transition metal alkoxides have been studied extensively in the past two decades by a number of investigators. This work has been reviewed by Bradley^{2,3}

* To whom correspondence should be addressed.

(2) D. C. Bradley, Advan. Chem. Ser., No. 23, 10 (1959).

⁽¹⁾ Presented in part at the 158th National Meeting of the American Chemical Society, New York, N. Y., Sept 7-12, 1969.

⁽³⁾ D. C. Bradley, "Preparative Inorganic Reactions," Vol. 2, W. L. Jolly, Ed., Wiley, New York, N. Y., 1962, pp 169-186.

and Mehrotra.⁴ However, alkoxides of the inner transition elements, particularly the lanthanide series, have received little attention. Mazdiyasni, *et al.*,⁵ and Mehrotra and coworkers⁶ reported the synthesis of some lanthanide alkoxides but presented very limited properties to characterize effectively the whole series of rare earth alkoxides.

In this paper, the methods of synthesis of yttrium and the lanthanide tris(isopropoxides) are discussed. Some of the properties of these compounds reported are elemental analysis, thermogravimetric analysis, infrared absorption frequencies, and uv and visible absorption data. Nmr and mass spectral data have been obtained for some representative isopropoxides.

Experimental Section

The preparative work was carried out in glass apparatus with ground-glass joints under reduced pressure or under an atmosphere of dry helium. Compounds were handled at all times in an inert atmosphere and were stored in an evacuated desiccator over calcium sulfate. Reagent grade isopropyl alcohol was purchased from Matheson Coleman and Bell and further dried before being used. Metal turnings with analyzed purity of 99.9% were purchased from Michigan Chemical Corp. and American Potash & Chemical Corp. All other chemicals were reagent grade. The quantitative analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, N. Y. Sublimation data were obtained with a McCarter vacuum sub-limer immersed in a silicone oil bath.

Thermogravimetric analysis was performed in air from room temperature to 1000° with a Burrell Stanton Model TR-1 thermobalance. Ir spectra in the 4000–250-cm⁻¹ region were recorded on a Perkin-Elmer 521 grating spectrophotometer using Nujol mulls and CsI windows. Absorption spectra in the 220– 650-m μ range were obtained with a Cary Model 14 recording spectrophotometer using 1–2% cyclohexane solutions and 1-cm path length absorption cells. A Varian Associates Model A-56/60 spectrometer was used to measure the nmr spectra of the isopropoxides in saturated benzene solutions at 60 MHz at a probe temperature of 37°. Mass spectra were recorded on a CEC Model 21-110B double-focusing mass spectrometer at temperatures of 120–250°.

Methods of Preparation .- Efforts to synthesize the rare earth isopropoxides by a previously reported method resulted in impure products and poor yield.6,7 The yttrium and lanthanide tris(isopropoxides) were prepared by the reaction of 5 g of metal turnings with 300 ml of isopropyl alcohol and a small amount of HgCl₂ (10^{-4} mol/g-atom of metal) as a catalyst. The mixture was refluxed at 82° for 24 hr and then cooled and filtered. After filtration the crude product was purified by recrystallization from hot isopropyl alcohol or vacuum sublimation. Yields of 75% or better were realized with this method. For some of the larger metal ions, lanthanum through neodymium, the reaction rate and per cent yield were increased by using for the catalyst a mixture of $HgCl_2$ and $Hg(C_2H_3O_2)_2$ or HgI_2 . Yttrium and the lanthanide isopropoxides are readily soluble in common organic solvents. These compounds are extremely moisture sensitive; the presence of <10 ppm of water is sufficient to initiate hydrolytic decomposition.

Results and Discussion

Synthesis of Isopropoxides.—Mazdiyasni, *et al.*,⁵ prepared yttrium, dysprosium, and ytterbium tris-(4) R. C. Mehrotra, *Inorg. Chim. Acta*, **1**, 99 (1967).

(5) K. S. Mazdiyasni, C. T. Lynch, and J. S. Smith, Inorg. Chem., 5, 342 (1966).

(6) R. C. Mehrotra, J. M. Batwara, S. N. Misra, T. N. Misra, and N. D. Tripathi, Proceedings of the 6th Rare Earth Conference, Oak Ridge, Tenn., May 3-5, 1967.

(7) R. N. P. Sinha, Sci. Cult., 25, 594 (1960).

(isopropoxides) from the metal and alcohol using $HgCl_2$ as a catalyst

$$M + 3C_8H_7OH \frac{H_gCl_2}{82^\circ}M(OC_8H_7)_8 + 1.5H_2 \uparrow + Hg$$

This reaction was previously thought to be confined to the alkali metals magnesium and aluminum; however, it was found that the method could be extended to the synthesis of yttrium and all of the lanthanide isopropoxides. For the lower lanthanides, namely, lanthanum, cerium, praseodymium, and neodymium, a mixture of $HgCl_2$ and $Hg(C_2H_3O_2)_2$ or HgI_2 was used to increase both the rate of reaction and per cent yield. The reactions within the series are slow and follow no significant trend. The size, shape, and oxygen content of the metal turnings used vary the surface area and thus influence the reaction rate and per cent yield.

Chemical Analysis.—The results of elemental analysis and sublimation temperatures are listed in Table I.

TABLE I ANALYTICAL DATA FOR YTTRIUM

			I DOI ROI ONIDED								
COLOR	SUBLIMATION POINT (^o C/mmHg)		ELEN 18 METAL	ELEMENTAL ANALYSIS* 3-METAL 3-CARBON							
White	200/0 10	Calcó Found	33. 40 33. 06	40, 60 40 39	7 97 7 87						
Green	175/0 04	Calcd Found	44, 29 43 80	33 98 33.55	6 65 6 82						
Blue		Calcd Found	44 86 45.70	33.62 33.19	6 58 6.36						
Lt. yellow	180/0.04	Calcd Found	45, 89 46 39	33 00 32, 56	6.46 6 18						
Orange		Calcd Found	56 25 55 53	26 68 26 82	5 22 5 30						
White	200/0 15	Calcd Found	47 Ol 47 78	32 31 31 63	6 33 6 04						
White	190/0.10	Calcd Found	47 27 47 56	32 15 31 94	6 3C 6.37						
Lt. yetlaw	190/0 17	Caled Found	47 83 48 43	31 81 31 49	623 604						
Peach	195/0 18	Calcd Found	48 20 49 02	31 59 30 85	6 18 5 98						
Pink	195/0 35	Calcd Found	48 55 49 25	31, 38 30, 02	614 597						
Lt green	185/0.06	Calcd Found	48 80 49 64	31 22 30 64	6 11 5 93						
White	195/0 02	Calcd Found	49.40 49.80	30.86 30 55	6 04 6 00						
White	196/0.10	Calcd Found	49 67 50 39	30 69 30 14	6.01 5.94						
	COLOR White Green Blue Lt. yellow Orange White White Lt. yellow Peach Pink Lt. green White White	SUBLINATION POINT COLOR (*Crimmid) White 2000 ID Green 1/5/0 04 Blue 180/0.04 Orange 0 White 200/0 ID White 180/0.04 Orange 0 White 190/0.10 ELL yellow 190/0.10 ELL yellow 190/0.10 ELL yellow 190/0.10 ELL green 195/0.18 Pink 195/0.25 White 195/0.25 White 195/0.22 White 196/0.20	SUBLINATION POINT COLOR IVE(INTION POINT White 2000 10 Calcd Found Green 175/0 04 Found Blue Found Calcd Found Blue Calcd Found Calcd Found Orange Calcd Found Calcd Found Orange Calcd Found Calcd Found White 180/0.04 Found White 190/0.10 Calcd Found White 190/0.10 Calcd Found White 190/0.10 Calcd Found Peach 195/0.10 Calcd Found Peach 195/0.10 Calcd Found Pink 195/0.13 Calcd Found Lt green 185/0.06 Found White 195/0.02 Calcd Found White 195/0.02 Calcd Found	SUBLIMATION POINT (°C/mmta) ELES SMETAL White 200/0 I0 Calcd 33.00 Green 1/5/0 04 Found 33.00 Green 1/5/0 04 Calcd 44.29 Blue Calcd 44.59 Blue Calcd 44.69 Found 43.00 Calcd 44.69 Blue Calcd 44.69 Found 45.70 LL yellow 180/0.04 Found 45.99 Found 45.99 Orange Calcd 47.71 Found 47.73 Found 47.73 White 190/0.10 Calcd 47.73 Found 47.78 White 190/0.10 Calcd 49.02 49.02 Peach 195/0.18 Calcd 49.02 Pink 195/0.02 Calcd 48.80 Lt green 185/0.02 Calcd 49.62 White 195/0.02 Calcd 49.62 White 195/0.02 Calcd <t< td=""><td>SUBL (MATION POINT (PC/mmHg) ELEMENTAL AVALUST IS - IX VETAL White 20010 I0 Caled Found 33.40 33.60 40.29 40.29 White 20010 I0 Caled Found 43.20 33.60 40.29 40.29 Green 11/510 04 Caled Found 44.29 43.80 33.86 Blue Caled Found 44.29 43.80 33.66/ 33.62 Blue Caled Found 45.80 33.62 Orange Caled Found 45.80 33.62 Orange Caled Found 45.90 33.19 Ut. yellow 180/0.04 Caled Found 45.92 26.68 Orange Caled Found 47.01 32.35 White 3900.10 Caled Found 47.93 31.61 Lt. yellow 190/0.10 Found 47.83 31.61 Peach 195/0.18 Caled 47.93 47.83 31.61 Lt. yellow 195/0.13 Caled 49.02 30.62 30.62 Prach 195/0.16 Caled 49.02 30.63 62</td></t<>	SUBL (MATION POINT (PC/mmHg) ELEMENTAL AVALUST IS - IX VETAL White 20010 I0 Caled Found 33.40 33.60 40.29 40.29 White 20010 I0 Caled Found 43.20 33.60 40.29 40.29 Green 11/510 04 Caled Found 44.29 43.80 33.86 Blue Caled Found 44.29 43.80 33.66/ 33.62 Blue Caled Found 45.80 33.62 Orange Caled Found 45.80 33.62 Orange Caled Found 45.90 33.19 Ut. yellow 180/0.04 Caled Found 45.92 26.68 Orange Caled Found 47.01 32.35 White 3900.10 Caled Found 47.93 31.61 Lt. yellow 190/0.10 Found 47.83 31.61 Peach 195/0.18 Caled 47.93 47.83 31.61 Lt. yellow 195/0.13 Caled 49.02 30.62 30.62 Prach 195/0.16 Caled 49.02 30.63 62						

Analyses for chlorine, iodine, and mercury were negative. Routine combustion analysis sometimes had to be corrected for a high residue result which is a consequence of premature sample decomposition.

Thermogravimetric Analysis.—The thermal hydrolytic decomposition of the isopropoxides to the respective metal oxides was studied by thermogravimetric analysis in air. Immediate dealkoxylation and formation of an intermediate hydroxide produces an approximately 30% weight loss from room temperature up to $200-250^\circ$. About 80% of the weight loss occurs during this stage of the decomposition reaction. The remaining weight loss occurs by the gradual conversion of the hydroxide to the oxide which is completed at 750- 850° . The residue is identified by X-ray powder diffraction analysis.

Infrared Spectra.—The ir spectra of the yttrium and lanthanide isopropoxides are quite similar and compare

favorably with the spectra reported by Mazdiyasni, et $al.,^5$ for yttrium, dysprosium, and ytterbium isopropoxides. Table II lists the observed absorption frequencies in the NaCl region for the rare earth isopropoxides in Nujol mulls. The lanthanide isopropoxides exhibit a unique series of five bands in the CsBr region as illustrated in Table III. This series of bands

TARE TH

COMPOUND	ABSORPTION FREQUENCIES										
Y(OC3H7)3	532s	493s	450s	418m	393 s						
La(OC ₃ H ₇) ₃	520s	475 m	441 m	410m	391 m						
CelOC 4H7 3	520s	490m	443m	410m	391 sh						
Pr(0C3H7)3	521 s	480s	444m	402 m	361 s						
Nd(OC3H7)3	523s	484s	444m	403 m	368 s						
Sm(OC ₃ H ₇) ₃	526m	486m	445 m	4 06 m	377 m						
Eu(OC3H7)3	525 s	490m	451 m	410m	373 m						
Gd(OC3H7)3	528s	493m	447 m	411 m	383 m						
Tb(OC ₃ H ₇)3	529s	493s	447 m	413m	389s						
Dy(OC ₃ H ₇) ₃	532s	495 s	449s	41 4m	390m						
Ho(OC3H7)3	532s	498s	448 m	41 4s	391 s						
Er (OC 1 H,)	533s	496 m	447 m	413m	391 m						
Tm(OC_1H_)	533s	496 s	448m	415m	394s						
Y6(0C3H,)3	534s	497 m	447 m	41 6 m	393 m						
Lu(OC ₃ H ₂) ₃	546s	501s	480s	41.3m	398 s						
M(OC_H_)	530s	491 s	447 m	415 m	391 m						

Misch metal isopropoxide

on the spectra is useful for immediate identification of these compounds. As the mass of the central atom increases, there is some trend for the absorption bands to shift to higher frequency; however, this is not always the case and cannot be used to distinguish quantitatively the spectra of the isopropoxides. Although the spectra are too similar to permit differentiation of the separate isopropoxides, the ir spectra have proved to be invaluable in checking the results of synthesis for completeness of reaction and identification of products.

Uv and Visible Absorption Data.—Since lanthanide complexes in general exhibit strong absorption frequencies in the visible and uv region, it is expected that uv and visible absorption spectra would provide useful information for differentiating the lanthanide isopropoxides. There is no known literature reference to indicate that this method has been applied to the characterization of alkoxides. Preliminary data have indicated that this analytical technique may indeed be valuable but the moisture sensitivity and rapid aging of these alkoxides are serious problems.

The observed absorption bands in the uv region $(220-350 \text{ m}\mu)$ for some of the lanthanide isopropoxides are listed in Table IV. Many of the bands appear to be due to the isopropoxy group since several of the compounds, including the isopropoxides of Y(III) and Lu(III) which are said to exhibit no absorption in the region,⁸ share many of the same absorption frequencies. In the visible region $(350-650 \text{ m}\mu)$, as seen in Table V,

(8) T. Moeller, "Inorganic Chemistry," Wiley, New York, N. Y., 1954, pp 127-226.

NaCl Region Absorption Frequencies of Vitrium and Lanthanide Isopropoxides (cm^{-1})

TABLE II

3 M(OC ₃ H ₇)3	• 2960vs*	• 2920vs*	• 2855vs*	2608w	14605*	1376s°	1365sh	1355m	13365	1168vs	11285	1005vs	970s	950s	835sh	830m	823sh	
Lu(OC ₃ H	2960vs	2925vs	2860vs	261 lw	14625*	13725°	1365sh	13585	13395	2173vs	11255	101 lvs	977s	952s	840m	835sh	\$28 m	
Yb(0C3H7)3	2955vs*	2922vs*	2855vs*	2617w	1461 5°	13785*	1365sh	1356s	1337.5	1172vs	11235	1010vs	976s	9 53s	839m	833m	825m	
Tm(0C ₃ H ₇) ₃	2952vs*	2920vs*	2850vs*	2610w	14575*	13735*	1 36 2sh	1352m	1334m	1167vs	11215	1004vs	9735	9485	835m	829m	821 m	
Er(0C ₃ H ₇) ₃	2950vs*	2918vs*	2848vs*	2610w	1459°	1374S*	1362sh	13525	13335	1165vs	1120s	1003vs	9705	947.S	835m	828m	820m	
но(ос ₃ н ₇) ₃	2950vs*	2920vs*	2855vs*	2615w	1460s*	1376s*	1363sh	1354s	13355	1167vs	1123vs	1005vs	975s	950s	836m	830m	821m	
0y(0C3H7)3	295lvs*	2920vs*	2854vs*	2614w	14605*	13765*		1350sh	1335s	1167vs	- 11235	1004vs	975s	951s	837m	827sh	822m	
Tb(0C ₃ H ₇) ₃	2950vs*	2915vs*	2850vs*	2608w	14665°	1372s*	1360sh	1350s	1330s	1163vs	11265	1001vs	S079	9485	834m	827sh	820m	
Gd(0C ₃ H ₇) ₃	2950vs*	2920vs*	2850vs*	2610w	1460s*	1375s*	1362sh	13545	13335	li 63vs	1123vs	1001vs	5695	950s	835m	830sh	821m	
$Eu(0C_3H_7)_2$	2950vs*	2920vs*	2850vs*	2620w	1460s*	13785*	1368sh	1358sh	1336s	1164vs	11205	- 50001	97.3s	9 58s	836m	832sh	&23m	:
Sm(0C ₃ H ₇) ₃	2950vs*	2920vs*	2855vs*	2611w	1460s*	13755		1353s	13325	1160s	llZ5vs	5 <i>11</i> 75	970s	9505	834m	826sh	820m	
Nd(OC ₃ H ₇) ₃	2950vs*	2920vs*	2850vs*	2609w	14595*	13765*	1361sh	1346sh	13305	1156vs	1121vs	SVE66	968s	950s	832m	825m	819m	
Pr(0C ₃ H ₇) ₃	2950vs*	2920vs*	2850vs*	2611w	14605*	1377 S*	1361sh	1355s	1331 \$	1156vs	1125vs	994vs	971s	952s	834m	827sh	820m	-
Ce(0C ₃ H ₇) ₄	2950vs*	2920vs*	2855vs*	2608w	14605*	13785*	1376sh	135 9s h	1329m	11585	1130vs	980v s	970sh	95 2s	836m		824m	
La(0C ₃ H ₇) ₃	2955vs*	2925vs*	2855vs*	2608w	14605*	13785*	1363sh	1357sh	1333m	1168vs	11275	992vs	965 s	946m	835m		820m	-
Y(0C3H7)3	2955vs*	2920vs*	2850vs*	2607 w	1460vs*	13765°	1363sh	1354m	1336ш	1168vs	11235	1005vs	974s	9 50s	835m	830m	822m	

TABLE IV UV Absorption Bands for Some Lanthanide Isopropoxides

COMPOUND*				λ	nax (mµ)					
Y (OC 3H7)3	270	260	255	249	243	238	234			
Sm(OC3H7)3	262	258	252	245	240					
EulOC3H712	265	259	253	246	232					
Gd(OC3H7)3	297	278	276	243						
Tb(OC3H7)3	302	264	257							
Dy(OC3H7)3	296	260	254	248	240					
Ho(OC3H7)3	338	292	289	281	260	254	249	242		
Er(003H7)3	268	261	254	249	244	239	234	230		
Tm(OC3H7)3	289	287	284	274	268	265	260	254	249	243
Lu(OC3H7)3	260	255	249	243						

• Cyclohexane solution

TABLE V VISIBLE REGION ABSORPTION BANDS FOR COLORED LANTHANIDE ISOPROPOXIDES

COMPOUND*	_					λma	<u>(mµ</u>)							
Pr(OC3H7)3	494	484	475	458										
Nd(OC3H7)3	601	598	594	590	584	582	579	536	532	528	434	432	361	354
\$m(003H7)3	408	404	478	372										
Ho(OC3H7)3	631	462	460	452	447	416	366	362						
Er(003H7)3	54 5	531	525	522	521	520	385	382	381	379	366			

•Cyclohexane solution.

the bands observed for the different alkoxides are unique and characteristic of each highly colored species.

Nmr Spectra.—Although nmr spectroscopy has been used for structure analysis of metal isopropoxides,^{9,10} most of the lanthanide ions are paramagnetic and their isopropoxides cannot be analyzed by this method. However, the trivalent ions of Y, La, and Lu are diamagnetic and nmr spectra were obtained for these isopropoxides. The characteristic spectrum of a monomeric isopropoxide consists of a doublet in the τ 7-9 region resulting from the resonance of the CH₃ protons and a septet in the τ 5–7 region due to the CH proton. Polymeric species give spectra with overlapping doublets and septets. Bradley¹⁰ has indicated that this overlapping is due to the chemical shifts of two or more differently situated alkoxy groups, such as terminal or bridging sites. Bridging tends to deshield the protons causing the resonance signals to occur at lower field.

The three nmr spectra obtained for the lanthanide isopropoxides were characteristic of polymeric isopropoxides although some of the peaks were somewhat broadened due to the inherent poor nmr resolution generally observed in rare earth metal complexes. The spectrum of $La(OC_3H_7)_3$ in benzene consisted of two doublets at 91.3 and 112.3 Hz and a broad septet around 272 Hz. Only one broad doublet was observed at 83 Hz for the $Y(OC_3H_7)_3$ -benzene solution with the septet at 264 Hz. The Lu($OC_3H_7)_3$ spectrum exhibited three overlapping doublets at 42.4, 49.0, and 69.5 Hz and the broad septet at about 230 Hz. The progressive lower field chemical shifts from Lu to La may be attributed to the combination of the deshielding of the CH₃ protons, the nature of covalency of the metal ions, and/or an increase in the degree of polymerization. It should be noted, however, that there is no definite correlation of the mass of the metal atom with the observed degree of lower field chemical shift.

Mass Spectrometry.—Mass spectra of some of the isopropoxides were recorded to obtain molecular weight measurements since the extreme moisture sensitivity of these alkoxides limits molecular weight determinations by the conventional method of vapor pressure osmometry. Previously Mazdiyasni, *et al.*,⁵ had proposed the dimeric structure similar to that of the smallest tris(aluminum alkoxide) involving a four-covalent metal with the tetrahedral configuration for aluminum.³ Misra and coworkers,¹¹ however, found the isopropoxides of La, Pr, and Nd to be monomeric in benzene.

Preliminary mass spectra recorded of the isopropoxides of Nd, Er, Tb, and Lu have shown peaks at low mass numbers corresponding to the isopropoxy group and its fragmentation and the next significant peaks in the mass number ranges for dimeric and tetrameric species. The tetrameric structure is postulated to be quite similar to the aluminum tris(isopropoxide) structure reported by Brown and Mazdiyasni.⁹ This part of the investigation is continuing with high-resolution mass spectrometric measurements of the molecular ion peaks and construction of the possible empirical formula by computer calculation.

Acknowledgments.—The authors gratefully acknowledge the assistance of Barbara Schaper in the preparation of the alkoxides, Lee Smithson in obtaining the mass spectra, and Sally Allen in typing the manuscript.

(11) S. N. Misra, T. N. Misra, R. N. Kapoor, and R. C. Mehrotra, Chem. Ind. (London), 120 (1963).

Contribution from the Michael Faraday Laboratories, Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115

The Synthesis, Characterization, and Some Reactions of *trans*-Diacetatobis(trimethylenediamine)chromium(III) Chloride Monohydrate

By Joe W. Vaughn,* Gary J. Seiler, 1 M. William Johnson, 2 and George L. Traister

Received April 1, 1970

The reaction of an aqueous solution of hydrated chromium(III) chloride, hydrofluoric acid, and various diamines such as ethylenediamine (en) or trimethylene-

⁽⁹⁾ L. M. Brown and K. S. Mazdiyasni, Anal. Chem., 41, 1243 (1969).
(10) D. C. Bradley and C. T. Holloway, Offic. Dig. J. Paint Technol. Eng., 37, 487 (1965).

^{*} To whom correspondence should be addressed.

⁽¹⁾ National Science Foundation Undergraduate Research Participant, Summers, 1968-1969.

⁽²⁾ Student Science Training Program Participant, Summer, 1969.